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ABSTRACT

Determination of the stability regime is a basic approach
in any investigation of atmospheric turbulence. The establish-
ment of stability criteria in the boundary layer is usually
accomplished by use of the nondimensional Richardson number.
The computation of accurate Richardson numbers is shown to be
adversely affected by a number of factors including the choice
of vertical gradients, the terrain, spacing of instruments,
and heterogeneous profiles of wind and temperature.
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INTRODUCTION

The analysis of turbulent processes in the first few meters of the atmo-
sphere is usually based upon some scheme for defining the stability regime in
operation at the time the experimental data are collected. The regimes may be
classified by any number of methods as long as the classification system yields
the desired results. The most common classifier of stability is the Richardson
number, which is quite adequate if certain precautions are observed in its cal-
culation. To use the Richardson number effectively as an identifier of the
stability regime, it is necessary to understand the turbulent processes within
the surface boundary layer.

Since the numerical calculation of the Richardson number Is highly depend-
ent upon the vertical gradients of wind velocity and temperature, proper evalua-
tion of these parameters is vital in terms of whether the data are representative
or have been biased by horizontal advection or the presence of local terrain ef-
fects that lead to unsteady-state flow.

Compensation for nonhomogeneous processes in the boundary layer can be
difficult, if all the contributing factors cannot be identified or isolated.
Some of the nonuniform effects on the accurate determination of the Richardson
number have been investigated with respect to unsteady-state flow in the surface
boundary layer. The results indicate that a meaningful Richardson number may
be computed with confidence using heterogeneous experimental data.

The purposes of this report are to discuss (1) the Richardson number, in-
cluding computation problems which arise using actual data, (2) nonequilibrium
effects on profile gradients, and (3) measurement requirements of vertical gra-
lients near the surface and to present results obtained by the author from data
collected at White Sands Missile Range and treated in view of the limitations
presented in (1) and (2) above.

DISCUSSION

The Richardson number, a nondimensional parameter possessing the charac-
teristics of dynamic similarity according to Batchelor (1953), is the eccepted
stability indicator in most studies concerning atmospheric turbulence. Richard-
son (1920, 1925), while investigating the effects of gravity on the suppression
of turbulence, derived a ratio of work done against gravitational stability to
energy transformed from mean to turbulent motion. It was asserted that a motion
which was slightly turbulent would remain so if the ratio were less than one
and would subside if the ratio were greater than one.

viclardson's criteria was most simply described by Brunt (1941) to be

Ss + r
Ri _3 -- a

T (av (1)
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where g is the acceleration due to gravity, f is mean temperature (OK) at the
level of interest, and the gradients, and r the dry adiabatic
lapse rate. Richardson's original assumption that the exchange coefficients for
heat and momentum were equal has been shown to be invalid, and Richardson's orig-
inal ratio is now taken to be the flux form of the Richardson number, Rf, which
according to Ellison (1957) may be expressed as

R - Ri g -
f KM)

where the exchange coefficients for heat and momentum are defined as

.T, w

_T (3)
3z

and

U? W1
KM -V (4)

az

Ellison also suggests that turbulence subsides at a value of Rf less than one,
and that the critical val'e is approached as a limit, under stable atmospheric
conditions, such that

R crit. - Riw = _ K (5)

where KM is independent of height. Hence Rf as well as Ri has a critical value.
The critical value of Rf is approximately 0.15 and according to McVehil (1962),
critical RI lies between 0.14 and 0.22, considerably less than Richardson's
original estimate of 1.0. Thus, as Ri approaches a critical limit, the ratio
KH/KM must decrease proportionally.

Experimental evidence based upon stationary conditions indicates that
KH/KM is approximately one in forced convection; but the actual values for all
stability conditions are still undetermined experimentally. Estimates are, de-
pending upon the stability regime, from 0.70 (Senderikhima, 1961) to 1.6
(Ellison, 1957) with a geometric mean value of 1.3 in unstable conditions.
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The basis of many hypotheses concerning the shape of the wind and temper-
ature profiles in the boundary layer under diabatic conditions is the Richardson
number. These include the independently derived models of Laikhtman (1944) and
Deacon (1949), usually written as

3V - Az- (6)

where P is a shape parameter and is a function of the Richardson number. It was
originally assumed that P was independent of height and thus a unique parameter,
but Davidson and Barad (1956) and later Lettau (1962) showed this assumption to
be in error.

From the similarity theory of Monin and Obukhov (1954) it can be shown
that the Richardson number is a unique function of z/L', an arbitrary gradient
length ratio defined by Panofsky, Blackadar and McVehil (1960) where

z
L' - SRi (7)

with S being defined as a nondimensional logarithmic wind shear. At least eight
diabatic boundary layer profile models based upon the work of Monin and Obukhov
and Eq. (7) have been developed as a function of the Richardson number.

The Richardson number also performs an important function in delineating
the transition between forced and free convection which occurs at approximately
Ri = -0.03. Priestley (1955) suggested that the transition was quite sharp. In
a later paper Priestley (1959) found that the transition was rather gradual, as
also determined by Panofsky, Blackadar, and McVehil (1960). From the theory of
free convection it can be shown that the transition zone lies in the stability
range -0.02 > Ri > -0.05 and that a junction height can be determined at z/L =

Ri = -0.03, where L is the Monin-Obukhov scaling height.

Another characteristic of the Richardson number is a rather smooth trend
toward larger absolute values with increasing height above the surface. Lettau
and Davidson (1957) list values of Ri from 100 - 2000 meters above the surface
for three stability classes, a contour number and the Deacon number (Table I).
In a discussion of diabatic surface layer models, Lettau (1962) and Davidson and
Barad (1956) stress the dependence of flow near the ground on flow conditions at
greater heights; thus the tendency of the Richardson number to increase in ab-
solute magnitude with height and especially the iqte at which Ri increases with
height will have considerable bearing on the wind profile shape in the boundary
layer.
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Extreme Lapse Neutral Extreme InversionHeight _ _ _ _-_ _ ___ _ _ _ _ _ _ _ _ _

(Meters) R . Ri a Ri a

2000 13.7 -0.50 0.07 1 2.9 -1.30 0.99 20.0 -1.10 2.13
1750 11.3 -0.50 0.19 2.7 -1.30 0.40 I 13.7 -1.10 2.10
1500 10.3 -0.51 0.45 2.4 -1.30 0.09 1.2 -1.10 2.10
1250 6.8 -0.45 0.81 2.5 -0.66 0.04 3.3 .-1.10 1.70
1000 2.9 -0.40 0.00 2.4 -0.66 0.07 1.3 -1,10 0.90

800 12.6 -0.24 -1.63 3.4 -0.40 0.18 1.0 -0.26 0.00
700 21.5 -0.18 -1.23 2.8 -0.30 1.05 2.4 -0.26 -1.18
600 28.5 -0.15 -1.74 5.2 -0.22 1.05 4.1 0.00 -0.94
500 54.7 -0.07 0.00 3.1 -0.14 1.05 4.1 0.00 -0.71

400 5.3 0.07 0.10 1.6 0.00 0.61 4.0 0.00 0.00
300 3.4 0.08 0.57 0.9 0.15 0.61 4.3 0.00 0.84
200 1.3 0.08 0.54 0.6 0.17 0.16 3.1 0.16 0.65
100 0.7 0.07 0.40 0.7 0.14 0.07 3.9 0.19 0.45

Table I. Local values of Richardson Number, Ri, Profile contour Number, a, and
Deacon Number, P, at indicated heights from class averages of free-air potential
temperature and wind component data. (After Lettau)

METHODS FOR DETERMINING THE RICHARDSON NUMBER

The Richardson number is usually computed by use of Eq. (1) in the form

Ri =)

T )~\2 
(8)

To facilitate computation, Eq. (1) can be restated as

0 (A )2 Anz (9)

and

Ri - g AT + F zdlnz
T (AVt (10)

assuming "geometric progression" spacing of the instruments and finite differ-
ence determination of the gradients.
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Lettau and Davidson (1957) define the Richardson number by

Ri - g(lno)' /V, 2  (11)

with the primes denoting partial differentiation with respect to height. Near
the surface this may be expressed as

Ri - g 0'/T •,2 (12)

where TM is the average temperature of the layer under consideration. Kutzback
(1961) defines Ri as

Ri - gAz ((13)
T (jV-)2  (3

A more simplified version of Ri is the "Poor Man's Richardson Number," a
stability ratio which is used to define the stability regime and is given by

T -T TI
S.R. ( 4--()

or

S.R. T T2 -T 1  (15)
2V1

with the subscripts denoting the instrument level of measurement. The stability
ratio has been used extensively by Deacon (1949) and Lettau and Davidson (1957).

Thus, it might be said that the determination of the Richardson number is
rather arbitrary. Certainly, it depends upon the chosen computation method.
All of the methods give similar results, with sampling time and interpretation
being the most difficult problems. To solve the sampling problem, one should
average over times commensurate with best estimates of the vertical transfer
processes. According to Van der Hoven (1957), from the analysis of wind spec-
tra, this estimate is approximately one hour's data; the estimate is further
verified by results presented by Lumley and Panofsky (1%4), which indicate that
there is a gap in the spectrum at a period of one hour, separating the micro-
and mesometeorological process scales in the atmosphere, indicative that approx-
imately one hour of data will constitute a quasi-stationary microscale ensemble
representative of prevailing conditions. If this is so, then boundary layer
processes can be defined with some accuracy if hour samples of wind and tempera-
ture profiles are available.
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However, shorter sampling periods may be used if prevailing synoptiz and
diurnal conditions are sufficiently stable to insure some stationarity, i.e.,
no cloud shadows are passing over the instrumentation site or measurements are
not taken through sunrise or sunset; hence, two or more stability regimes are
not combined in one data sample. According to Swinbank (1964) a cloud passing
between the sun and an instrumentation array can cause nonequilibrium conditions
Lhat take up to 15 minutes or more to stabilize, owing to the change in heat flux
from the abrupt drop in insolation. Thus, it can be seen that when many non-
stationary processes are affecting the data, the measurement or evaluation of
any micrometeorological parameter including the Richardson number becomes quite
uncertain.

NONEQUILIBRIUM EFFECTS ON PROFILE GRADIENTS

Richardson numbers are dependent upon the vertical gradients of velocity
and potential temperature. Since Ri is a ratio of work done to energy trans-
formed from mean to turbulent flow. it is apparent that the definition of a mean
is quite critical ior accurate determination of the prevailing stability regime,
To describe the mean accurately requires homogeneity of flow, iLe., defined as
a gaussian and stochLstic distribution of the variable.

For instance, a Richardson number that is to be used by Similarity Theory
must be properly determined or it will lead to huge errors in the gradient and
scale lengths, the normalized shear, the heat and momentum fluxes and the shear-
ing stress. Since Similarity Theory requires that a system be stationary in both
time and space, trends and heterogeneous flow resulting from terrain effects must
be compensated fcr or they will tend to nullify any results obtained from appli-
cation of the theory. In fact, most investigators of micrometeorological wind
and temperature profiles assume homogeneity, or work over areas where they feel
that the fetch is of sufficient distance upwind to assure homogeneous flow.
However, fetch is only one factor to consider in assuming homogeneous flow.
Local advection may cause nonhomogeneity even if a system is steady with time.
Good indicators that advection is occurring are nonequilibrium vertical grad-
ients of wind shear and potential temperature.

Philip (1959) derived a theory of local advection based upon the conjugate
laws and near-neutral conditions that indicated that changes of heat and mois-
ture fluxes at the air-earth interface led to vertical gradients of the fluxes
that were variable with height for some distance downwind. Dyer and Pruitt
(1962), while comparing eddy-flux determinations at a height of 4 meters and a
fetch of 130 meters over an irrigated field surrounded by arid areas, found
horizontal gradients of temperature and humidity of considerable magnitude be-
tween the surface and 4 meters. Applying Philip's method, Dyer (1963) found
that adjustment of gradients with distance from a leading edge (abrupt change
of flux) or with time required more distance or time than heretofore suspected.
Until recently, the value of the fetch-height ratio for equilibrium flow was of
the order of 50 to 75:1. Dyer (1963) reported that the fetch-height ratio was
as large as 530 for 90 percent adjustment at a height of 50 meters with a time
as long as 86 minutes, indicating that homogeneous fetches as much as 10 times
greater than had been used previously are needed for equilibrium conditions.

Philip (1959) and Dyer (1963) assumed no change in surface roughness in
conjunction with the change in heat and moisture flux. The effect of change
in roughness was predicted by Ellison (1957) and investigated by Elliott
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(1958a, 1958b). Elliott's theory of internal boundaries was extended by Panof-
sky and Townsend (1964). Basically, the hypothesis assumes that air flowing
across a surface and encountering an abrupt change in roughness will experience
an acceleration in the layer next to the surface causing an internal boundary to
form. The flow beneath the boundary will possess the characteristics of the new
surface while the flow above the boundary will exhibit the characteristics of the
terrain upstream of the discontinuity. The slope of the boundary appears to be
1:10 with a fairly sharp interface separating the masses of air influenced by
the two types of terrain. Elliott (1958b) found that the basic relationship can
be expressed approximately by

h = 0.86x°o 8z°. 2  (16)
0

where h is the height of the irternal boundary, x the distance downwind from the
leading edge discontinuity, and zo is the roughness length. In the above hypoth-
esis, Elliott (1958b) states that unstable conditions lead to an increase in the
height of the boundary and stable conditions lead to a decrease in the height of
the boundary, relative to the adiabatic case. It is clear, then, that surface
discontinuities and advection can lead to the establishment of heterogeneous
horizontal gradients and nonstationary time series that result in variable ver-
tical gradients. Therefore, data derived from observations under such conditions
for determining the Richardson number and indirectly the parameters necessary
for application of diabatic profile theory, without considering fetch and flux
effects, should be used with caution.

THE MEASUREMENT OF VERTICAL GRADIENTS NEAR THE SURFACE

Vertical gradients are usually calculated by a finite-difference approxi-
mation, where the level of interest is midway between the levels where measure-
ments are made or at the geometric mean of the two levels. According to Bern-
stein and Young (1962), considerable error may occur if the gradient varies with
height, as in the case of local advection or the internal boundary.

Gradients such as or are usually measured by assuming a
finite difference such that

AT T2 T 1 (17)

AZ z2 - 1

is a good approximation. The levels z, and z 2 are generally selected so that the
level of interest falls at the midpoint. Since the mean temperature and mean
wind are not usually linear functions of height but are more likely to be logar-
ithmic or exponential, it is clear that a linear interpolation may be valid only
under neutral conditions. I

To compensate for nonlinear gradients, Bernstein and Young (1962) develop-
ed a technique for determining the heights at which instruments must be mounted
to provide gradient measurements at the height of interest. Also, correction
factors are provided to obtain the gradient at any height from measurements at
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any two heights, provided the profile shape is known. Thus, the nonlinearity of
profile may be compensated for, but not the nonstationarity.

If two sensors are located equal distances above and below the level of
interest; the value obtained for the gradient is too large and is actually the
value for some level below the level of interest. The error will tend to in-
crease as the separation between the sensors increases (Bernstein and Young,
1%2). Errors can range from 1 percent to 7 percent when the separation is half
as great as the height above ground of the level of interest or from 3 percent
to 34 percent for a separation distance equal to the height of interest or from
10 percent to 13 percent for a separation 1 times the height of the level of
interest.

RICHARDSON NUMBER USING WSMR DATA

Same Richardson numbers and stability ratios computed from data obtained
on the 62-meter research tower at White Sands Missile Range are presented in
Tables II, III and IV. The data used to evaluate Ri is considered to be heter-
ogeneous owing to the prevailing conditions at the time of observation. The
data for 0234-0333 MST, 26 January 1%2, were taken while a nocturnal drainage
wind was occurring and modifying the prevailing flow. The data for 1600-1659
MST, 7 May 1962, were observed during a highly unstable period. It appears that
the internal boundary at the tower site (Hansen and Hansen, 1%5) was completely
masked by free convection effects overriding the mechanical processes generating
the internal boundary. The data for 1330-1429 MST, 5 February 1%2, were observ-
ed with the mean flow across heterogeneous terrain. Wind and potential tempera-
ture profiles for the three periods are presented in Figures 1, 2 and 3.

Height Ri Ri Ri Ri S.R. S.R.
(Meters) (1) (9) (12) (13) (14) (15)

2.95 0.022 0.011 0.015 0.011 0.0031 0.0035

5.33 0.023 0.023 0.016 0.023 0.0022 0.0024

9.65 0.045 0.027 0.010 0.027 0.0020 0.0022

15.92 0.018 0.016 0.008 0.016 0.0009 0.0010

22.10 0.033 0.026 0.010 0.026 0.0006 0.0006

28.22 0.027 0.021 0.014 0.021 0.0004 0.0004

34.36 0.037 0.073 0.061 0.074 1 0.0004 0.0004

43.21 0.042 0.023 0.005 0.024 0.0004 0.0004

55.50 0.054 0.039_ 0.013 0.038 0.0003 0.0003

Table II. Richardson numbers and stability ratios for 0234-0333 MST, 26
January 1962. The numbers in parentneses are the equation num-
bers used. Nocturnal drainage wind conditions.
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Height Ri Ri 1 Ri Ri I S.R. S.R.
(Meters) (1) (9) (12) (13) (14) (15)

29 000 -0.069 -0.165 -0.070 1-0.0188 -0.0210

5.33 -0.090 -0.086 -0.066 -0.087 -0,0108 -0.0122

9.65 -0.101 -0.123 -0.037 -0.125 -0.0085 -0.0095

15.92 -0.264 -0.166 -0.086 -0.174 -0.0036 -0.0038

22.10 -0.212 -0.234 -0.124 -0.233 -0.0021 -0.0022

28.22 -0.254 -0.194 -0.194 -0.195 -0.0011 -0,0011

34.36 -0.342 -0.257 -0.176 -0.262 -0.0008 -0.0008

43.21 -0.332 -0.221 -0.038 -0.225 -0.0009 -0.0010

55.50 -0.401 -0,461 -0.103 -0.454 -0.0009 -0.0009

Table III. Richardson numbers and stability ratios for 1600-1659 MST, 7 May
1962. The numbers in parentheses are the equation numbers used.
Highly unstable daytime conditions.

Height I Ri Ri j Ri (R i S.R. S.R.

(Meters) (1) (9) (12) (13)j (14) (is
2.95 ~-0.288 1 -0.490 -0.449 I-0.499 -0.0494 -0.0563

5.33 0.318 -0.403 -0.231 -0.408 -0.0264 -0,0290

9.65 -0.334 I-0.477 -0.127 -0.486 -0.0181 -0.0211

15.92 -1.217 -0.976 -0.394 -1.007 -0.0074 -0.0077

22.10 -2.156 -1.795 -0.902 I-1.784 -0.0045 -0.0047

28.22 -0.766 -0.700 -0.557, -0.704 -0.0022 -0.0022

34.36 -4.158 -2.331 -2.038 -2.379 -0.0026 -0.0027

43.21 -5.040 -4.264 -0.505 -4.333 -0.0030 -0.0041

55.50 -4.684 -4-'.447 J-1.14 3_ -4.402 ~-0.0020 -0,00201

Table IV. Richardson numbers and stability ratios for 1330-1429 M~ST, 5
February 1962. The numbers in parentheses are the equation
numbers used. Flow across nonuniform terrain.
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Richardson numbers calculated from Equations (1), (9), and (13) were com-
parable; significantly different values of Ri were obtained using Eq. (12). The
Bernstein and Young (1962) gradient corrections were applied to calculations for
Eq. (1) only. The stability ratio calculations showed no significant differences
between Eq. (14) and Eq. (15). The departures observed using Eq. (12) are at-
tributed to certain inaccuracies in obtaining log e' owing to values of log
2-O1/l1og (zi -z 2 ) being very close to zero. All results are considered to be

within the limits of accuracy of the instruments used to obtain the data.

Absolute values of Richardson numbers with respect to height above the
surface are presented to Table V. One hundred forty-seven wind and temperature
profiles of data obtained from the research tower were used in this phase of

Height Stable Unstable Extremely Unstable
(Meters)

Ri Ri Ri

2.95 0.113 0.026 0.360

5.33 0.309 0.056 0.501

9.65 0.610 0.063 0.326

15.92 0.812 0.193 1.290

22.10 1.610 0.276 1,836

28.22 0.135 0.356 1.903

34.36 0.882 0.484 2.930

43.21 1.287 0.687 3.199

55.50 1.176 1.098 7.162

Table V. Absolute values of the gradient Richardson number
for the first 62 meters of the boundary layer.

the study. The profiles were classified as stable, unstable, and extremely un-
stable using the Richardson number at 2.95 meters as thc classifier. The stable
cases included all values of Ri > 0, while the unstable cases were in the range
0 > Ri >-0.05, and the extremely unstable regime was Ri < -0.05. From Table V
it will be seen that only the stable case provides values of Ri that are compa-
rable to those listed in Table I, indicating that nocturnal stability is similar
in two distinctly separate locales. On the other hand, the daytime cases repre-
sented by the unstable and extremely unstable data show that stability is a func-
tion of insolation, ground cover, fetch, and roughness discontinuities. The
data in Table I were obtained during the Great Plains Turbulence Program at
O'Neill, Nebraska, over reasonably homogeneous terrain, while the data from WSMR
were obtained over heterogeneous terrain in a semi-arid region. Apparently, a
combination of transparency of the atmosphere, surface roughness, nonuniform
terrain and nonstationary flow conditions lead to atmospheric processes that

13



are baslcally more unstable than observed over the Great Plains. Local influ-
ences at the WSMR observational site include the formation of internal momentum
and thermal boundaries, local advection of heat and momentum, and conditions of
windlezs convection as defined by Lumley and Panofsky (1964).

The Richardson numbers determined for the tower locale generally increase
in absolute magnitude with height, with some discontinuities in the general
trend. For the stable case, the abrupt increase in Ri between 15.92 and 22.10
meters is indicative of advection of heat and adiabatic warming of the atmosphere
under nocturnal drainage wind conditions. The unstable and extremely unstable
cases also reflect advection of heat and particularly the internal thermal bound-
ary formation as indicated by the values of Ri at 9.65 and 15.92 meters. Wind-
less convection conditions are apparent in the extremely unstable cases, from the
large values of Ri observed above 15.92 meters.

CONCLUSIONS

The accurate determination of the Richardson number for micrometeorologi-
cal purposes is highly dependent upon proper evaluation of the vertical gradients
of wind and potential temperature in the first few meters of the atmosphere.
The presence of heterogeneous processes in the planetary boundary layer leads to
improper evaluation of the vertical gradients if these phenomena are not recog-
nized and compensated for in the analysis of the data.

The existence of a gap in the wind speed spectrum with a period of approx-"
imately one hour separating the micro- from the mesoscale processes in the bound-
ary layer indicates that commensurate averaging times are needed to provide ade-
quate information on the stability of the lowest few meters of the atmosphere.

Values of Ri for the first 62 meters above the surface as computed for the
White Sands Research Tower are considered to be representative for the locale
and the flow conditions prevalent when the experimental data were obtained.
Failure to take into account the terrain over which the flow occurs or the tur-
bulent processes in operation could lead to erroneous evaluation of the stabil-
ity regime or rejection of the data as unrealistic.

1
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